单片机

PIC单片机 学习单片机|PIC单片机学习 PIC单片机编程 PIC单片机教程下载 PIC单片机学习编程实例源程序 PIC单片机仿真器编程器 PIC单片机编程器价格 PIC单片机学习板开发板购买方式 PIC单片机论坛

请选择较快的服务器访问:南方用户:www.pic16.com 北方用户:www.pic16.cn

 
PIC系列单片机程序设计基础三

  PIC单片机的查表程序可以利用子程序带值返回的特点来实现。具体是在主程序中先取表数据地址放入W,接着调用子程序,子程序的第一条指令将W置入PC,则程序跳到数据地址的地方,再由“RETLW”指令将数据放入W返回到主程序。下面程序以F10放表头地址。
      MOVLW  TABLE     ;表头地址→F10  
      MOVWF  10
          ┋
      MOVLW  1        ;1→W,准备取“1”的线段值
      ADDWF  10,1      ;F10+W =“1”的数据地址
      CALL  CONVERT
      MOVWF  6        ;线段值置到B口,点亮LED
          ┋
  CONVERT MOVWF  2        ;W→PC TABLE
      RETLW  0C0H      ;“0”线段值
      RETLW  0F9H      ;“1”线段值
          ┋
      RETLW  90H       ;“9”线段值
   9)“READ……DATA,RESTORE”格式程序
  “READ……DATA”程序是每次读取数据表的一个数据,然后将数据指针加1,准备取下一个数据。下例程序中以F10为数据表起始地址,F11做数据指针。
      POINTER  EQU  11   ;定义F11名称为POINTER
          ┋
      MOVLW   DATA
      MOVWF   10     ;数据表头地址→F10
      CLRF   POINTER   ;数据指针清零
          ┋
      MOVF   POINTER,0  
      ADDWF 10,0      ;W =F10+POINTER
          ┋
      INCF    POINTER,1  ;指针加1
      CALL CONVERT      ;调子程序,取表格数据
          ┋
  CONVERT MOVWF   2    ;数据地址→PC
  DATA  RETLW   20H    ;数据
          ┋
      RETLW 15H      ;数据
  如果要执行“RESTORE”,只要执行一条“CLRF POINTER”即可。
  10) PIC单片机 延时程序
  如果延时时间较短,可以让程序简单地连续执行几条空操作指令“NOP”。如果延时时间长,可以用循环来实现。下例以F10计算,使循环重复执行100次。
      MOVLW D‘100’
      MOVWF 10
  LOOP  DECFSZ 10,1   ;F10—1→F10,结果为零则跳
      GOTO LOOP
       ┋
  延时程序中计算指令执行的时间和即为延时时间。如果使用4MHz振荡,则每个指令周期为1μS。所以单周期指令时间为1μS,双周期指令时间为2μS。在上例的LOOP循环延时时间即为:(1+2)*100+2=302(μS)。在循环中插入空操作指令即可延长延时时间:
      MOVLW  D‘100’
      MOVWF  10
  LOOP   NOP
       NOP
       NOP
      DECFSZ 10,1
      GOTO LOOP
        ┋
  延时时间=(1+1+1+1+2)*100+2=602(μS)。
  用几个循环嵌套的方式可以大大延长延时时间。下例用2个循环来做延时:
      MOVLW   D‘100’
      MOVWF   10
  LOOP  MOVLW   D‘16’
      MOVWF   11
  LOOP1  DECFSZ   11,1
      GOTO    LOOP1
      DECFSZ   10,1
      GOTO LOOP
       ┋
  延时时间=1+1+[1+1+(1+2)*16-1+1+2]*100-1=5201(μS)
  11) PIC单片机RTCC计数器的使用
  RTCC是一个脉冲计数器,它的计数脉冲有二个来源,一个是从RTCC引脚输入的外部信号,一个是内部的指令时钟信号。可以用程序来选择其中一个信号源作为输入。RTCC可被程序用作计时之用;程序读取RTCC寄存器值以计算时间。当RTCC作为内部计时器使用时需将RTCC管脚接VDD或VSS,以减少干扰和耗电流。下例程序以RTCC做延时:
      RTCC  EQU  1
       ┋
      CLRF  RTCC    ;RTCC清0
      MOVLW  07H
      OPTION    ;选择预设倍数1:256→RTCC
   LOOP  MOVLW  255   ;RTCC计数终值
      SUBWF  RTCC,0
      BTFSS STATUS,Z   ;RTCC=255?
      GOTO LOOP
       ┋
  这个延时程序中,每过256个指令周期RTCC寄存器增1(分频比=1:256),设芯片使用4MHz振荡,则:
  延时时间=256*256=65536(μS)
  RTCC是自振式的,在它计数时,程序可以去做别的事情,只要隔一段时间去读取它,检测它的计数值即可。
  12) 寄存器体(BANK)的寻址
  对于PIC16C54/55/56,寄存器有32个,只有一个体(BANK),故不存在体寻址问题,对于PIC16C57/58来说,寄存器则有80个,分为4个体(BANK0-BANK3)。在对F4(FSR)的说明中可知,F4的bit6和bit5是寄存器体寻址位,其对应关系如下:
 

Bit6   Bit5
BANK
物理地址
0    0
BANK0
10H~1FH
0    1
BANK1
30H~3FH
1    0
BANK2
50H~5FH
1    1
BANK3
70H~7FH

  当芯片上电RESET后,F4的bit6,bit5是随机的,非上电的RESET则保持原先状态不变。
  下面的例子对BANK1和BANK2的30H及50H寄存器写入数据。
  例1.(设目前体选为BANK0)
      BSF   4,5    ;置位bit5=1,选择BANK1
      MOVLW  DATA
      MOVWF  10H    ; DATA→30H
      BCF   4,5
      BSF   4,6   ;bit6=1,bit5=0选择BANK2
      MOVWF  10H    ;DATA→50H
  从上例中我们看到,对某一体(BANK)中的寄存器进行读写,首先要先对F4中的体寻址位进行操作。实际应用中一般上电复位后先清F4的bit6和bit5为0,使之指向BANK0,以后再根据需要使其指向相应的体。
  注意,在例子中对30H寄存器(BANK1)和50H寄存器(BANK2)写数时,用的指令“MOVWF 10H”中寄存器地址写的都是“10H”,而不是读者预期的“MOVWF 30H”和“MOVWF 50H”,为什么?
  让我们回顾一下指令表。在PIC16C5X单片机的所有有关寄存器的指令码中,寄存寻址位都只占5个位:fffff,只能寻址32个(00H—1FH)寄存器。所以要选址80个寄存器,还要再用二位体选址位PA1和PA0。当我们设置好体寻址位PA1和PA0,使之指向一个BANK,那么指令“MOVWF 10H”就是将W内容置入这个BANK中的相应寄存器内(10H,30H,50H,或70H)。
  有些设计者第一次接触体选址的概念,难免理解上有出入,下面是一个例子:
  例2:(设目前体选为BANK0)
      MOVLW  55H 
      MOVWF  30H   ;欲把55H→30H寄存器
      MOVLW  66H
      MOVWF  50H   ;欲把66H→50H寄存器
  以为“MOVWF 30H”一定能把W置入30H,“MOVWF 50H”一定能把W置入50H,这是错误的。因为这两条指令的实际效果是“MOVWF 10H”,原因上面已经说明过了。所以例2这段程序最后结果是F10H=66H,而真正的F30H和F50H并没有被操作到。
  建议:为使体选址的程序清晰明了,建议多用名称定义符来写程序,则不易混淆。   例3:假设在程序中用到BANK0,BANK1,BANK2的几个寄存器如下:

BANK0
地址
BANK1
地址
BANK2
地址
BANK3
地址
A
10H
B
30H
C
50H
·
70H
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·

PIC单片机   http://www.pic16.com    -蓝精灵-